Add like
Add dislike
Add to saved papers

Alkali delivery in chronic hemodialysis: Would more acetate be helpful?

The dialysate alkali used in hemodialysis to replace low body alkali levels in end stage renal disease (ESRD) patients has changed over time from bicarbonate to acetate and finally back to bicarbonate with a small addition of acetate. The ideal way to replace alkali in dialysis patients remains uncertain. Elsewhere in this issue of the journal, Sargent and Gennari, who have contributed greatly to our understanding of dialysis and acid-base kinetics, suggest that decreasing the currently used concentration of bicarbonate while increasing concentration of acetate in the dialysate may be a much more physiological approach to alkali delivery during hemodialysis. These recommendations are based on results from a series of hemodialysis simulations using mathematical theoretical methods, with the assumption that acetate metabolism will be sufficiently delayed with the higher acetate dialysate and reduce the rate of correction of metabolic acidosis during dialysis. Although valuable in calling attention to the issues surrounding alkali repletion during hemodialysis, these postulations should be tested in clinical trials. We believe, however, that the available evidence suggests that the rate of gain of bicarbonate during dialysis with the higher acetate dialysate would not be slower and that the replacement of some dialysate bicarbonate with acetate will not alter alkali accretion or intradialytic pH.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app