Add like
Add dislike
Add to saved papers

Reduced gray matter volume in the left prefrontal, occipital, and temporal regions as predictors for posttraumatic stress disorder: a voxel-based morphometric study.

The concept of acute stress disorder (ASD) was introduced as a diagnostic entity to improve the identification of traumatized people who are likely to develop posttraumatic stress disorder (PTSD). Neuroanatomical models suggest that changes in the prefrontal cortex, amygdala, and hippocampus play a role in the development of PTSD. Using voxel-based morphometry, this study aimed to investigate the predictive power of gray matter volume (GMV) alterations for developing PTSD. The GMVs of ASD patients (n = 21) were compared to those of PTSD patients (n = 17) and healthy controls (n = 18) in whole-brain and region-of-interest analyses. The GMV alterations seen in ASD patients shortly after the traumatic event (T1) were also correlated with PTSD symptom severity and symptom clusters 4 weeks later (T2). Compared with healthy controls, the ASD patients had significantly reduced GMV in the left visual cortex shortly after the traumatic event (T1) and in the left occipital and prefrontal regions 4 weeks later (T2); no significant differences in GMV were seen between the ASD and PTSD patients. Furthermore, a significant negative association was found between the GMV reduction in the left lateral temporal regions seen after the traumatic event (T1) and PTSD hyperarousal symptoms 4 weeks later (T2). Neither amygdala nor hippocampus alterations were predictive for the development of PTSD. These data suggest that gray matter deficiencies in the left hemispheric occipital and temporal regions in ASD patients may predict a liability for developing PTSD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app