Add like
Add dislike
Add to saved papers

Biosynthesis, characterization, and anticancer effect of plant-mediated silver nanoparticles using Coptis chinensis .

Background: Tremendous growth in nanotechnology has opened up new frontiers in fundamental and applied aspects, including the synthesis of nanoscale matter and understanding/utilizing its exotic physicochemical and optoelectronic properties. Green-synthesis methods employing either biological microorganisms or plant extracts have emerged as a simple and alternative to chemical synthesis.

Methods: In our present study, we aimed to synthesize silver nanoparticles (AgNPs) in combination with an aqueous extract of Coptis chinensis (CC) using a suitable ecofriendly green-synthesis way.

Results: In our results, ultraviolet-visible spectroscopy revealed a near-absorbance peak at 450 nm, which confirmed the AgNP synthesis. The crystalline nature of the AgNPs was revealed with X-ray diffraction. Transmission electron-microscopy analysis showed spherically dispersed nanoparticles of 6-45 nm diameter. We analyzed the elementary mechanism across A549 lung carcinoma cells ahead of treatment with doses of CC-AgNPs (10 µg/mL and 25 µg/mL). The antiproliferative effect of CC-AgNPs revealed a significant decline in cell viability. Antibacterial assays with both Gram-negative ( Escherichia coli ) and Gram-positive ( Staphylococcus aureus ) bacteria exhibited a higher zone of inhibition against S. aureus .

Conclusion: Furthermore, CC-AgNPs regulated apoptosis using the intrinsic pathway to inhibit A549-cell proliferation. Proliferation migration and invasion were notably inhibited by CC-AgNPs, which promoted apoptosis in lung adenocarcinoma cells by regulating the apoptotic pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app