Add like
Add dislike
Add to saved papers

Quantum Chemical and Kinetic Study on Radical/Molecule Formation Mechanism of Pre-Intermediates for PCTA/PT/DT/DFs from 2-Chlorothiophenol and 2-Chlorophenol Precursors.

Polychlorinated phenoxathiins (PCPTs), polychlorinated dibenzothiophenes (PCDTs), and polychlorinated thianthrenes (PCTAs) are sulfur analogues of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/DFs). Chlorothiophenols (CTPs) and chlorophenols (CPs) are key precursors for the formation of PCTA/PT/DTs, which can react with H or OH to form chloro(thio)phenoxy radical, sulfydryl/hydroxyl-substituted phenyl radicals, and (thio)phenoxyl diradicals. However, previous radical/radical PCTA/DT formation mechanisms in the literature failed to explain the higher concentration of PCDTs than that of PCTAs under the pyrolysis or combustion conditions. In this work, a detailed thermodynamics and kinetic calculations were carried out to investigate the pre-intermediate formation for PCTA/PT/DTs from radical/molecule coupling of the 2-C(T)P with their key radical species. Our study showed that the radical/molecule coupling mechanism explains the gas-phase formation of PCTA/PT/DTs in both thermodynamic and kinetic perspectives. The S/C coupling modes to form thioether-(thio)enol intermediates are preferable over the O/C coupling modes to form ether-(thio)enol intermediates. Thus, although the radical/molecule coupling of chlorophenoxy radical with 2-C(T)P has no effect on the PCDD/PT formation, the radical/molecule coupling of chlorothiophenoxy radical with 2-C(T)P plays an important role in the PCTA/PT formation. Most importantly, the pre-PCDT intermediates formation pathways from the couplings of sulfydryl/hydroxyl-substituted phenyl radical with 2-C(T)P and (thio)phenoxyl diradicals with 2-C(T)P are more favorable than pre-PCTA/PT intermediates formation pathways from the coupling of chlorothiophenoxy radical with 2-C(T)P, which provides reasonable explanation for the high PCDT-to-PCTA ratio in the environment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app