Add like
Add dislike
Add to saved papers

Design and Development of Bioinspired Calcium phosphate nanoparticles of MTX: Pharmacodynamic and Pharmacokinetic evaluation.

The aim of this investigation is the management of rheumatoid arthritis (RA) by developing methotrexate loaded calcium phosphate nanoparticles (MTX-CAP-NP) and to evaluate pharmacokinetic and pharmacodynamic behaviour in adjuvant induced arthritis model. The nanoparticles were synthesized by wet precipitation method and optimized by Box-Behnken experimental design. MTX-CAP-NPs were characterized by TEM, FTIR, DSC and XRD studies. The particle size, zeta potential and entrapment efficiency of the optimized nanoparticles were found to be 204.90 ± 64 nm, -11.58 ± 4.80 mV and 88.33 ± 3.74% respectively. TEM, FTIR, DSC and XRD studies revealed that the developed nanoparticles were nearly spherical in shape and the crystalline structure of CAP-NP was not changed after MTX loading. The pharmacokinetic studies revealed that MTX-CAP-NP enhanced bioavailability of MTX by 2.6 fold when compared to marketed formulation (FOLITRAX-10). Under pharmacodynamic evaluation, arthritic assessment, radiography and histopathology studies revealed that CAP has ability to regenerate cartilage and bone therefore, together with MTX, MTX-CAP-NPs have shown significant reduction in disease progression. The overall work demonstrated that the developed nanodelivery system was well tolerated and more effective than the marketed formulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app