Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Doxorubicin-loaded red blood cells reduced cardiac toxicity and preserved anticancer activity.

Drug Delivery 2019 December
Doxorubicin (DOX) is one of the most widely used anticancer agents. DOX is known for inducing cardiotoxicity, resulting in the long-term development of heart failure. Intravascular delivery of DOX may benefit from the carriage by red blood cells (RBCs), as they can limit the systemic toxicity while delivering the DOX to the tumor. This study proposes a methodology for the synthesis of electrophoretically DOX-loaded red blood cells (RBC-DOX), as well as the assessment of its antitumorigenic effects in human colon cancer cells (HT-29), and in colon cancer xenograft models. In addition, healthy mice without tumors were dosed with RBC-DOX to assess cardiotoxicity via assessment of indexes of cardiac function after multiple doses of RBC-DOX. The HT-29 IC50 was found to be lower for RBC-DOX compared to free DOX. Tumor volume for the RBC-DOX group was smaller than the free DOX groups in HT-29 xenografts models. Statistically higher concentrations of DOX were found in the liver, spleen, and lungs for the RBC-DOX group compared to the free DOX group. However, the heart and the skin had statistically lower DOX concentrations for the RBC-DOX group compared to the free DOX group, with no significant differences in tumor biodistribution. All hemodynamic and cardiac function parameters were closer to control parameters for the RBC-DOX treated compared to for the free DOX-treated mice. These results suggest that RBC-DOX can be an alternative to prolong treatments with DOX, with superior antitumorigenic effects, decreased myelosuppression, and limited cardiac toxicity compared to equivalent doses of free DOX.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app