Add like
Add dislike
Add to saved papers

Improving electron micrograph signal-to-noise with an atrous convolutional encoder-decoder.

Ultramicroscopy 2019 March 27
We present an atrous convolutional encoder-decoder trained to denoise electron micrographs. It consists of a modified Xception backbone, atrous convoltional spatial pyramid pooling module and a multi-stage decoder. Our neural network was trained end-to-end using 512  ×  512 micrographs created from a large dataset of high-dose ( > 2500 counts per pixel) micrographs with added Poisson noise to emulate low-dose ( ≪  300 counts per pixel) data. It was then fine-tuned for high dose data (200-2500 counts per pixel). Its performance is benchmarked against bilateral, Gaussian, median, total variation, wavelet, and Wiener restoration methods with their default parameters. Our network outperforms their best mean squared error and structural similarity index performances by 24.6% and 9.6% for low doses and by 43.7% and 5.5% for high doses. In both cases, our network's mean squared error has the lowest variance. Source code and links to our high-quality dataset and pre-trained models are available at https://github.com/Jeffrey-Ede/Electron-Micrograph-Denoiser.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app