JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Multicopper oxidases: Biocatalysts in microbial pathogenesis and stress management.

The acquisition of metal ions such as iron, copper and manganese is essential for the survival of microorganisms as these are constituents of metalloproteins including enzymes, storage proteins, structural elements, transcription factors and antimicrobial factors in various biological processes. However, excess of these metal ions is associated with significant toxicity due to spontaneous redox cycling of ions and obstruction of normal metabolic pathways. To overcome this, microbes have developed a variety of metal regulatory systems allowing them to adapt to the changing biotic and abiotic environments. Multi-copper oxidases (MCOs) such as ceruloplasmins, ferroxidases, laccases and nitrite reductases are such regulatory systems employed by microbes to resist the toxicity of metal ions by controlling their oxidation states under aerobic conditions. MCOs help pathogens survive during an infection by evasion of the toxic environment generated by the host immune system and thus are considered necessary determinants of virulence. This review summarizes the role of MCOs in metal homeostasis under stressful conditions and the extent to which these MCOs contribute to microbial virulence within the host that might prove as an esteemed avenue for the development of novel antimicrobial therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app