Add like
Add dislike
Add to saved papers

Ageing differently: Sex-dependent ageing rates in Daphnia magna.

Ageing is defined as the gradual decline of normal physiological functions in a time-dependent manner. Significant progress has been made in characterising the regulatory processes involved in the mechanisms of ageing which would have been hindered without the use of model organisms. Use of alternative model organisms greatly diversifies our understanding of different factors underpinning the ageing process and the potential translation for human application. Unique characteristics make Daphnia an attractive model organism for research into mechanisms underlying ageing, such as transparent body, short generation time, well-characterised methylome, regenerative capabilities and available naturally occurring ecotypes. Most interestingly, genetically identical female and male Daphnia have evolved different average lifespans, providing a unique opportunity for understanding the underlying mechanisms of ageing and regulation of lifespan. Investigating sex differences in longevity could provide insight into principal mechanisms of ageing and lifespan regulation. In this study we provide evidence in support of establishing genetically identical female and male Daphnia as unique and valuable resources for research into mechanisms of ageing and begin to delineate the mechanisms involved in sex differences in lifespan. We identify significant differences between genders in physiological markers such as lifespan, growth rate, heart rate and swimming speed in addition to molecular markers such as lipid peroxidation product accumulation, thiol content decline and age-dependent decline in DNA damage repair efficiency. Overall, our data indicates that investigating sex differences in longevity in the clonal organism Daphnia under controlled laboratory conditions can provide insight into principal mechanisms of ageing and lifespan regulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app