Add like
Add dislike
Add to saved papers

Multi-physics modeling to study the influence of tissue compression and cold stress on enhancing breast tumor detection using microwave radiometry.

Bioelectromagnetics 2019 March 29
The influence of tissue compression and external thermal modulation on passive detection of breast tumors using medical microwave radiometry was investigated using multi-physics numerical modeling. A three-dimensional numerical model of the pendant breast with 10 and 6 mm diameter tumors at varying depths (15 mm, 30 mm) was analyzed at thermodynamic equilibrium using a circular waveguide as the receive antenna. The contrast in the brightness temperature, ΔTB , between the unhealthy and healthy breasts was found to be significantly more for breast compression alone, compared to thermal modulation of the tissue surface, irrespective of tissue composition, tumor size, and depth. The study also concludes that small deep-seated tumor with very low metabolic activity that is not detectable by a radiometer with 0.1 °C sensitivity could be detected under breast compression and short duration cold stress. Thus, detection of deep-seated breast tumors can be significantly improved under controlled tissue compression with an optional cold stress. Bioelectromagnetics. © 2019 Bioelectromagnetics Society.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app