Add like
Add dislike
Add to saved papers

CRISPR Gene Drive Efficiency and Resistance Rate Is Highly Heritable with No Common Genetic Loci of Large Effect.

Genetics 2019 March 28
Gene drives could allow for control of vector-borne diseases by directly suppressing vector populations or spreading genetic payloads designed to reduce pathogen transmission. CRISPR homing gene drives work by cleaving wild-type alleles, which are then converted to drive alleles by homology-directed repair, increasing the frequency of the drive in a population over time. However, resistance alleles can form when end-joining repair takes place in lieu of homology-directed repair. Such alleles cannot be converted to drive alleles, which would eventually halt the spread of a drive through a population. To investigate the effects of natural genetic variation on resistance formation, we developed a CRISPR homing gene drive in Drosophila melanogaster and crossed it into the genetically diverse Drosophila Genetic Reference Panel (DGRP) lines, measuring several performance parameters. Most strikingly, resistance allele formation post-fertilization in the early embryo ranged from 7% to 79% among lines and averaged 42±18%. We performed a Genome-Wide Association Study (GWAS) using our results in the DGRP lines and found that the resistance and conversion rates were not explained by common alleles of large effect, but instead there were several genetic polymorphisms showing weak association. RNAi knockdown of several genes containing these polymorphisms confirmed their effect, but the small effect sizes imply that their manipulation would likely yield only modest improvements to the efficacy of gene drives.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app