Add like
Add dislike
Add to saved papers

Technologies for the Directed Evolution of Cell Therapies.

SLAS Technology 2019 August
The next generation of therapies is moving beyond the use of small molecules and proteins to using whole cells. Compared with the interactions of small-molecule drugs with biomolecules, which can largely be understood through chemistry, cell therapies act in a chemical and physical world and can actively adapt to that world, amplifying complexity but also the potential for truly breakthrough impact. Although there has been success in introducing targeting proteins into cells to achieve a therapeutic effect, for example, chimeric antigen receptor (CAR) T cells, our ability to engineer cells is generally limited to introducing proteins, but not modulating large-scale traits or structures of cellular "machines," which play critical roles in disease. Example traits include the ability to secrete compounds, deform through tissue, adhere to surrounding cells, apply force to phagocytose targets, or move through extracellular matrix. There is an opportunity to increase the efficacy of cell therapies through the use of quantitative automation tools, to analyze, sort, and select rare cells with beneficial traits. Combined with methods of genetic or epigenetic mutagenesis to create diversity, such approaches can enable the directed cellular evolution of new therapeutically optimal populations of cells and uncover genetic underpinnings of these optimal traits.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app