Add like
Add dislike
Add to saved papers

Physiological effects of nitrogen deficiency and recovery on the macroalga Gracilaria lemaneiformis (Rhodophyta).

Journal of Phycology 2019 March 28
Algal metabolites are the most promising feedstocks for bio-energy production. Gracilaria lemaneiformis seems to be a good candidate red alga for polysaccharides production, especially relating to the agar production industry. Nitrogen deficiency is an efficient environmental pressure used to increase the accumulation of metabolites in algae. However, there are no studies on the physiological effects of G. lemaneiformis in response to nitrogen deficiency and its subsequent recovery. Here we integrated physiological data with molecular studies to explore the response strategy of G. lemaneiformis under nitrogen deficiency and recovery. Physiological measurements indicated that amino acids and protein biosynthesis were decreased, while endogenous NH4 + and soluble polysaccharides levels were increased under nitrogen stress. The expression of key genes involved in these pathways further suggested that G. lemaneiformis responded to nitrogen stress through up-regulation or down-regulation of genes related to nitrogen metabolism, and increased levels of endogenous NH4 + to complement the deficiency of exogenous nitrogen. Consistent with the highest accumulation of soluble polysaccharides, the gene encoding UDP-glucose pyrophosphorylase, a molecular marker used to evaluate agar content, was dramatically up-regulated more than 4-fold compared to the relative expression of actin after 4 days of nitrogen recovery. The present data provide important information on the mechanisms of nutrient balance in macroalgae. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app