Add like
Add dislike
Add to saved papers

Effects of artepillin C on model membranes displaying liquid immiscibility.

It has been hypothesized that the therapeutic effects of artepillin C, a natural compound derived from Brazilian green propolis, are likely related to its partition in the lipid bilayer component of biological membranes. To test this hypothesis, we investigated the effects of the major compound of green propolis, artepillin C, on model membranes (small and giant unilamelar vesicles) composed of ternary lipid mixtures containing cholesterol, which display liquid-ordered (lo) and liquid-disordered (ld) phase coexistence. Specifically, we explored potential changes in relevant membrane parameters upon addition of artepillin C presenting both neutral and deprotonated states by means of small angle X-ray scattering (SAXS), differential scanning calorimetry (DSC), and confocal and multiphoton excitation fluorescence microscopy. Thermotropic analysis obtained from DSC experiments indicated a loss in the lipid cooperativity of lo phase at equilibrium conditions, while at similar conditions spontaneous formation of unilamellar vesicles from SAXS experiments showed that deprotonated artepillin C preferentially located at the surface of the membrane. Time-resolved experiments using fluorescence microscopy showed that at doses above 100 µM, artepillin C in its neutral state interacted with both liquid-ordered and liquid-disordered phases, inducing curvature stress and promoting dehydration at the membrane interface.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app