Add like
Add dislike
Add to saved papers

How Hosts Taxonomy, Trophy, and Endosymbionts Shape Microbiome Diversity in Beetles.

Microbial Ecology 2019 March 28
Bacterial communities play a crucial role in the biology, ecology, and evolution of multicellular organisms. In this research, the microbiome of 24 selected beetle species representing five families (Carabidae, Staphylinidae, Curculionidae, Chrysomelidae, Scarabaeidae) and three trophic guilds (carnivorous, herbivorous, detrivorous) was examined using 16S rDNA sequencing on the Illumina platform. The aim of the study was to compare diversity within and among species on various levels of organization, including evaluation of the impact of endosymbiotic bacteria. Collected data showed that beetles possess various bacterial communities and that microbiota of individuals of particular species hosts are intermixed. The most diverse microbiota were found in Carabidae and Scarabaeidae; the least diverse, in Staphylinidae. On higher organization levels, the diversity of bacteria was more dissimilar between families, while the most distinct with respect to their microbiomes were trophic guilds. Moreover, eight taxa of endosymbiotic bacteria were detected including common genera such as Wolbachia, Rickettsia, and Spiroplasma, as well as the rarely detected Cardinium, Arsenophonus, Buchnera, Sulcia, Regiella, and Serratia. There were no correlations among the abundance of the most common Wolbachia and Rickettsia; a finding that does not support the hypothesis that these bacteria occur interchangeably. The abundance of endosymbionts only weakly and negatively correlates with diversity of the whole microbiome in beetles. Overall, microbiome diversity was found to be more dependent on host phylogeny than on the abundance of endosymbionts. This is the first study in which bacteria diversity is compared between numerous species of beetles in a standardized manner.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app