Add like
Add dislike
Add to saved papers

Enhanced antibacterial properties and the cellular response of stainless steel through friction stir processing.

Biofouling 2019 March 27
Biofilm related bacterial infection is one of the primary causes of implant failure. Limiting bacterial adhesion and colonization of pathogenic bacteria is a challenging task in health care. Here, a highly simplistic processing technique for imparting antibacterial properties on a biomedical grade stainless steel is demonstrated. Low-temperature high strain-rate deformation achieved using submerged friction stir processing resulted in a nearly single phase ultra-fine grain structure. The processed stainless steel demonstrated improved antibacterial properties for both Gram-positive and Gram-negative bacteria, significantly impeding biofilm formation during the in vitro study. Also, the processed stainless steel showed better compatibility with human fibroblasts manifested through apparent cell spreading and proliferation. The substantial antibacterial properties of the processed steel are explained in terms of the favorable electronic characteristics of the metal-oxide and by using classical Derjaguin-Landau-Verwey-Overbeek (DLVO) and the extended DLVO (XDLVO) approach at the cell-substrate interface.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app