Add like
Add dislike
Add to saved papers

3D space-dependent models for stochastic dosimetry applied to exposure to low frequency magnetic fields.

Bioelectromagnetics 2019 March 27
In this study, an innovative approach that combines Principal Component Analysis (PCA) and Gaussian process regression (Kriging method), never used before in the assessment of human exposure to electromagnetic fields (EMF), was applied to build space-dependent surrogate models of the 3D spatial distribution of the electric field induced in central nervous system (CNS) of children of different ages exposed to uniform magnetic field at 50 Hz of 200 μT of amplitude with uncertain orientation. The 3D surrogate models showed very low normalized percentage mean square error (MSE) values, always lower than 0.16%, confirming the feasibility and accuracy of the approach in estimating the 3D spatial distribution of E with a low number of components. Results showed that the electric field values induced in CNS tissues of children were within the ICNIRP basic restrictions for general public, with 99th percentiles of the E values obtained for each orientation showing median values in the range 1.9-2.1 mV/m. Similar 3D spatial distributions of the electric fields were found to be induced in CNS tissues of children of different ages. Bioelectromagnetics. 9999:1-10, 2018. © 2019 Bioelectromagnetics Society.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app