Add like
Add dislike
Add to saved papers

Selection of avian influenza A (H9N2) virus with reduced susceptibility to neuraminidase inhibitors oseltamivir and zanamivir.

Virus Research 2019 March 23
Identification of amino-acid substitutions in the neuraminidase (NA) of low-pathogenic avian influenza (AI) H9N2 viruses is important to study the susceptibility to NA inhibitors (NAI). To identify mutations under NAI selective pressure, the virus was serially passaged with increasing levels of either oseltamivir or zanamivir in ovo, and the growth of the viruses in the presence and absence of NAI's compared. Mutations R292 K in the presence of oseltamivir and E119D in presence of zanamivir were observed within passage one and two respectively. The R292 K mutation reduced oseltamivir susceptibility significantly (2,523-fold) and moderately reduced susceptibility to zanamivir. The E119D mutation significantly reduced susceptibility to zanamivir (415-fold) and remained susceptible to oseltamivir. Genetic stability of the mutations assessed by serial passages of the mutant viruses in eggs without drug pressure resulted in the loss of these mutations, making the virus susceptible to both the drugs. Molecular modeling and dynamics simulations revealed that the R292 K mutation disrupted oseltamivir binding similar to other group 2 NAs, while a different mechanism was noted for zanamivir binding for both R292 K and E119D mutations. The study highlights the need for regular susceptibility screening of circulating AI viruses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app