Add like
Add dislike
Add to saved papers

MALAT1-driven inhibition of Wnt signal impedes proliferation and inflammation in fibroblast-like synoviocytes through CTNNB1 promoter methylation in rheumatoid arthritis.

Human Gene Therapy 2019 March 27
Fibroblast-like synoviocytes (FLSs) participate in the pathogenesis of rheumatoid arthritis (RA). Emerging evidence has highlighted the role of long non-coding RNA (lncRNA) metastasis associated lung adenocarcinoma transcript 1 (MALAT1) and its potential involvement in RA. In this study, we test the hypothesis that the MALAT1 might inhibit proliferation and inflammatory response of FLSs in RA. The expression of MALAT1 was examined in synovial tissues from patients with RA. The effect of MALAT1 on cultured FLSs was analyzed by introducing overexpressed MALAT1 or shRNA against MALAT1. To validate whether methylation of CTNNB1 promoter was affected by MALAT1 alternation, we assessed the recruitment of DNA methyltransferases to CTNNB1 promoter. In cultured FLSs with shRNA-mediated CTNNB1 knockdown or activated Wnt signaling, we found the interaction between CTNNB1 and Wnt signaling. MALAT1 expression was reduced in synovial tissues of RA. MALAT1 could bind to CTNNB1 promoter region and recruit methyltransferase to promote CTNNB1 promoter methylation, thereby inhibiting CTNNB1. Notably, MALAT1 could suppress the transcription and expression of CTNNB1, thereby modulating the Wnt signaling pathway. Silenced MALAT1 stimulated the nucleation of β-catenin and the secretion of inflammatory cytokines including interleukin-6, interleukin-10, and tumor necrosis factor-α. Additionally, shRNA-mediated MALAT1 silencing elevated proliferation and suppressed apoptosis of FLSs accompanied. These findings provide evidence for the inhibitory effect of MALAT1 on proliferation and inflammation of FLSs by promoting CTNNB1 promoter methylation and inhibiting the Wnt signaling pathway. Therefore, this study provides a candidate therapeutic target for RA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app