Add like
Add dislike
Add to saved papers

"Radiation Damping" in gas spin comagnetometers.

We report a new kind of interaction between overlapping Rb-Xe spin ensembles polarized by spin-exchange optical pumping. The Rb acts as both a medium to optically polarize the Xe spins and as a magnetometer to probe the precession of Xe spins. When Xe spins precess, they result in the precession of Rb spins. Like the radiation damping effect caused by the coil in conventional NMR systems, the precessing Rb spins lead to damping and a frequency-shift for the precessing Xe spins. When Xe spins are operated in a free-induction decay mode, the transverse relaxation time and oscillating frequency of Xe spins change due to the "radiation damping" effect of Rb spins. When Xe spins are operated in the self-oscillating mode, its transverse relaxation time and oscillating frequency will also be changed. These effects will influence the accuracy of NMR probes, which are widely used in the search for CPT- and Lorentz-invariance violations, the fifth force, etc. If this problem is solved or compensated for, the limit of the aforementioned search may be improved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app