Add like
Add dislike
Add to saved papers

An Artificial Tissue Homeostasis Circuit Designed via Analog Circuit Techniques.

Tissue homeostasis (feedback control) is an important mechanism that regulates the population of different cell types within a tissue. In type-1 diabetes, auto-immune attack and consequent death of pancreatic β cells result in the failure of homeostasis and loss of organ function. Synthetically engineered adult stem cells with homeostatic control based on digital logic have been proposed as a solution for regenerating β cells. Such previously proposed homeostatic control circuits have thus far been unable to reliably control both stem-cell proliferation and stem-cell differentiation. Using analog circuits and feedback systems analysis, we have designed an in silico circuit that performs homeostatic control by utilizing a novel scheme with both symmetric and asymmetric division of stem cells. The use of a variety of feedback systems analysis techniques, which is common in analog circuit design, including root-locus techniques, Bode plots of feedback-loop frequency response, compensation techniques for improving stability, and robustness analysis help us choose design parameters to meet desirable specifications. For example, we show that lead compensation in analog circuits instantiated as an incoherent feed forward loop in the biological circuit improves stability while simultaneously reducing steady-state tracking error. Our symmetric and asymmetric division scheme also improves phase margin in the feedback loop, and thus improves robustness. This work could be useful in porting an analog-circuit design framework to synthetic biological applications of the future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app