Add like
Add dislike
Add to saved papers

Electroacupuncture enhances antioxidative signal pathway and attenuates neuropathic pain induced by chemotherapeutic paclitaxel.

One of the significant limiting complications of paclitaxel is painful peripheral neuropathy during its therapy for several types of cancers. Our recent study showed that impairment of Nrf2-antioxidant response element (Nrf2-ARE) and upregulation of oxidative signals in the dorsal root ganglion (DRG) of rats with treatment of paclitaxel result in neuropathic pain. The purpose of this study was to examine the beneficial role played by electroacupuncture (EA) in modifying neuropathic pain evoked by paclitaxel via Nrf2-ARE and oxidative mechanisms. Behavioral test was performed to determine mechanical and thermal sensitivity in rats. Western Blot analysis and ELISA were used to examine expression of Nrf2-ARE and superoxide dismutases (SOD); and the levels of products of oxidative stress in the DRG. Our data showed that paclitaxel increased mechanical and thermal sensitivity and this was accompanied with impaired Nrf2-ARE and SOD in the DRG and amplified products of oxidative stress (i.e., 8-isoprostaglandin F2alpha and 8-hydroxy-2'-deoxyguanosine). EA treatment largely restored the levels of Nrf2-ARE/SOD and inhibited products of oxidative stress and thereby attenuated mechanical and thermal hypersensitivity induced by paclitaxel. In conclusion, we revealed specific signaling pathways leading to paclitaxel-evoked neuropathic pain, including impairment of Nrf2-ARE and heightened oxidative signals. We further provided evidence for the role of EA in alleviating paclitaxel-neuropathic pain via these molecular mediators.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app