MENU ▼
Read by QxMD icon Read
search
OPEN IN READ APP
JOURNAL ARTICLE

Low-intensity current (LIC) stimulation of subcutaneous adipose derived stem cells (ADSCs) - A missing link in the course of LIC based wound healing

Ravindra V Badhe, Sonali S Nipate
Medical Hypotheses 2019, 125: 79-83
30902156
Millions of people die as a result of fatal injuries accounting for 9% of the total global annual deaths. Non fatal injuries generally result in variety of wounds. The normal wound healing process is slow and takes weeks to months, depending on the type of wound. In last two decades, electrotherapy called low-intensity currents (LIC) for the treatment became popular for faster wound healing, as well as in management of nonresponding and ulcerative wounds. It was reported that LIC mimics 'the current of injury' which is generated by body on wounding and helps in faster wound healing. Researchers have also studied the migration of localized cell and other bio-molecules under the influence of LIC helping the wound to heal faster. Literature review has also suggested that, electrical stimulation of isolated adipose tissue derived stem cells (ADSCs) releases growth factors and differentiates in to specialized cells like fibroblasts and keratinocytes in laboratory conditions. These research areas are well explored and emerged as independent state-of-the-arts therapies and technologies. Considering the fact, that adipose tissue (along with ADSCs) is present subcutaneously, a new hypothesis is proposed which states that 'low intensity current (LIC) stimulation of wound stimulates subcutaneous adipose tissue containing ADSCs which releases different growth factors and also differentiates into certain cells like fibroblasts, neurons and keratinocytes. These cells easily migrate to wound site due to lipolysis and loosening of fat tissue, resulting in faster wound healing'. Thus this hypothesis provides a missing link between two state of the art technologies; first one is 'LIC based electrotherapy' and second one is 'in-vitro LIC stimulation of ADCSs' where role and significance of in-situ ADCSs were never studied.

Comments

You need to log in or sign up for an account to be able to comment.

No comments yet, be the first to post one!

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
30902156
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"