Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Human milk oligosaccharides promote immune tolerance via direct interactions with human dendritic cells.

Human milk oligosaccharides (HMOS) are a complex mixture of bioactive components supporting the immune development of breastfed-infants. Dendritic cells (DCs) play a central role in the regulation of immune responses, being specialized in antigen presentation and driving T-cell priming as well as differentiation. However, little is known about the direct effects of HMOS on human DC phenotypes and functions. Here, we report that HMOS mixture isolated from pooled human milk, induced semi-maturation of human monocytes-derived DCs (moDCs), and elevated levels of IL-10, IL-27 and IL-6 but not IL-12p70 and TNF-α. Consistently, HMOS-conditioned human moDCs promoted Treg generation from naïve CD4+ T cells. Interestingly, HMOS limited LPS-induced maturation of human moDCs, while maintained IL-10 and IL-27 secretion and reduced LPS-induced production of IL-12p70, IL-6 and TNF-α. Furthermore, HMOS+LPS-stimulated DCs induced a higher frequency of Tregs and increased IL-10 production, while a reduction in Tbet+Th1 frequency and IFN-γ production was detected as compared to LPS-DCs. The regulatory effects of HMOS seemed to be mediated by interactions of HMOS with receptors, including but not limited to TLR4 and DC-SIGN on human moDCs. In conclusion, HMOS contain tolerogenic factors influencing human moDCs and thereby modulating the development of the neonatal immune system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app