Add like
Add dislike
Add to saved papers

The optimal size of protocells from simple entropic considerations.

Potential constraints on protocell size are developed from simple entropic considerations. To do that, two new different indexes as measures of their structural and dynamic order were developed and applied to an elemental model of the heterotrophic protocell. According to our results, cell size should be a key factor determining the potential of these primitive systems to evolve and consequently to support life. Our analyses also suggest that the size of the optimal vesicles could be constrained to have radii in the interval [Formula: see text], where the two extreme limits [Formula: see text] and [Formula: see text] represent the states of maximum structural order (largest accumulation of substrate inside the vesicle) and the maximum flux of entropy production, respectively. According to the above criteria, the size of the optimum vesicles falls, approximately, in the same spatial range estimated for biological living cells assuming plausible values for the second-order rate constant involved in the catabolic process. Furthermore, the existence of very small vesicles could be seriously affected by the limited efficiency, far from the theoretical limits, with which these catabolic processes may proceed in a prebiotic system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app