Add like
Add dislike
Add to saved papers

The Antidepressant-like Effect of Flavonoids from Trigonella Foenum-Graecum Seeds in Chronic Restraint Stress Mice via Modulation of Monoamine Regulatory Pathways.

Fenugreek ( Trigonella Foenum-Graecum ) seeds flavonoids (FSF) have diverse biological activities, while the antidepressant-like effect of FSF has been seldom explored. The aim of this study was to evaluate the antidepressant-like effect of FSF and to identify the potential molecular mechanisms. LC-MS/MS was used for the determination of FSF. Chronic restraint stress (CRS) was used to establish the animal model of depression. Observation of exploratory behavior in the forced swimming test (FST), tail suspension test (TST) and sucrose preference test (SPT) indicated the stress level. The serum corticosterone (CORT) level was measured. The monoamine neurotransmitters (5-HT, NE and DA) and their metabolites, as well as monoamine oxidase A (MAO-A) enzyme activity in the prefrontal cortex, hippocampus and striatum, were evaluated. The protein expression levels of KLF11, SIRT1, MAO-A were also determined by western blot analysis. The results showed that FSF treatment significantly reversed the CRS-induced behavioral abnormalities, including reduced sucrose preference and increased immobility time. FSF administration markedly restored CRS induced changes in concentrations of serum corticosterone, prefrontal cortex neurotransmitters (NE, 5-HT and DA), hippocampus neurotransmitters (NE, 5-HT and DA) and striatum neurotransmitters (NE). FSF treatment exhibited significant inhibition of MAO-A activity in the prefrontal cortex and hippocampus. FSF also significantly down-regulated the KLF11, SIRT1 and MAO-A protein expression levels in the prefrontal cortex and hippocampus. These findings indicate that FSF could exhibit an antidepressant-like effect by down-regulating the KLF11/SIRT1-MAO-A pathways, inhibiting MAO-A expression and activity, as well as up-regulating monoamine neurotransmitters levels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app