Add like
Add dislike
Add to saved papers

Extracelluar and intracellular tumor necrosis factor alpha modulates cytosolic and nuclear calcium in human cardiovascular cells.

TNFα and its type 1 receptor (TNFR1) are implicated in several autoimmune diseases, including rheumatoid arthritis, and are associated with complications at the cardiovascular level. Using human cardiomyocytes, vascular smooth muscle, vascular endothelial and endocardial endothelial cells coupled to indirect immunofluorescence, our results showed the presence of TNFR1 at the levels of the plasma membrane (including the cytosol) and mostly at the level of the nuclear membranes (including the nucleoplasm). The distribution of the receptor is different between cell types; however, the density is significantly higher at the nuclear level in all four cell types. The density of the receptor was the highest in contractile cells including the cardiomyocytes and vascular smooth muscle cells, compared to endothelial cells including endocardial endothelial and vascular endothelial cells. Using the Ca2+ probe Fluo-3 coupled to quantitative confocal microscopy, our results showed that the cytokine induced a sustained Ca2+ increase in both the cytosol and nucleoplasm of all four cell types. This increase was more significant at the nuclear level, mainly in endothelial cells. In conclusion, our results demonstrated the presence of TNFR1 at both the cell and nuclear membranes of cardiovascular cells, and that its activation modulated both cytosolic and nuclear Ca2+.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app