Add like
Add dislike
Add to saved papers

Discovery and Elucidation of Counteranion Dependence in Photoredox Catalysis.

Over the past decade, there has been a renewed interest in the use of transition metal polypyridyl complexes as photoredox catalysts for a variety of innovative synthetic applications. Many derivatives of these complexes are known, and the effect of ligand modifications on their efficacy as photoredox catalysts has been the subject of extensive, systematic investigation. However, the influence of the photocatalyst counteranion has received little attention, despite the fact that these complexes are generally cationic in nature. Herein, we demonstrate that counteranion effects exert a surprising, dramatic impact on the rate of a representative photocatalytic radical cation Diels-Alder reaction. A detailed analysis reveals that counteranion identity impacts multiple aspects of the reaction mechanism. Most notably, photocatalysts with more non-coordinating counteranions yield a more powerful triplet excited state oxidant and longer radical cation chain length. It is proposed that this counteranion effect arises from Coulombic ion-pair interactions between the counteranion and both the cationic photoredox catalyst and the radical cation intermediate, respectively. The comparatively slower rate of reaction with coordinating counteranions can be rescued by using hydrogen-bonding anion binders that attenuate deleterious ion-pairing interactions. These results demonstrate the importance of counteranion identity as a variable in the design and optimization of photoredox transformations and suggest a novel strategy for the optimization of organic reactions using this class of transition metal photocatalysts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app