Add like
Add dislike
Add to saved papers

Segregation in Drying Binary Colloidal Droplets.

ACS Nano 2019 March 22
When a colloidal suspension droplet evaporates from a solid surface, it leaves a characteristic deposit in the contact region. These deposits are common and important for many applications in printing, coating, or washing. By using superamphiphobic surfaces as a substrate, the contact area can be reduced so that evaporation is almost radially symmetric. While drying, the droplets maintain a nearly perfect spherical shape. Here, we exploit this phenomenon to fabricate supraparticles from bidisperse colloidal aqueous suspensions. The supraparticles have a core-shell morphology. The outer region is predominantly occupied by small colloids forming a close-packed, crystalline structure. Towards the center, the number of large colloids increases and they are packed amorphously. The extent of this stratification decreases with decreasing the evaporation rate. Complementary simulations indicate that evaporation leads to a local increase in density, which in turn exerts stronger inward forces on the larger colloids. Comparison between experiments and simulations suggest that hydrodynamic interactions between the suspended colloids reduce the extent of stratification. Our findings are relevant for the fabrication of supraparticles for applications in the fields of chromatography, catalysis, drug delivery, photonics, and a better understanding of spray drying.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app