Add like
Add dislike
Add to saved papers

Study of the Degradation Mechanisms of Oxidized Cellulose-Derivative Hemostatic Agent by Using Model Compound.

Degradable hemostatic agents are the essential materials for controlling the hemorrhage. Hemostatic oxidized cellulose carboxylate sodium fiber (OCCSF) has been synthesized via a simple neutralization reaction between water-insoluble oxidized cellulose fiber (OCF) and NaOH. Importantly, the degradation mechanisms of OCCSF have been investigated in vitro assay. Chemical structure of the material is tested by using FT-IR and NMR, and no obvious change was detected before and after degradation. Degree of polymerization (DP) of OCCSF declines with prolonging the degradation period, accompanying with the decrease in carboxyl content (CC), so that it could be concluded that OCCSF may undergo decarboxylation degradation process. Besides, combined the change of fiber color with UV, another elimination degradation mechanism of OCCSF could be deduced, and this has been demonstrated using 1,2-cyclohexanedione as the model compound.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app