Add like
Add dislike
Add to saved papers

Efficacy of New Polylactic Acid Nonwoven Fabric as a Hemostatic Agent in a Rat Liver Resection Model.

Surgical Innovation 2019 March 22
BACKGROUND: During minimally invasive surgery, efficient and nontoxic hemostats are important for difficult to access bleeding areas. Polylactic acid is an ecofriendly hemostatic agent and we aimed to evaluate the efficacy of a polylactic acid nonwoven fabric (PLAF) developed by Toray Industries, Inc, on liver hemostasis in a preclinical study.

MATERIALS AND METHODS: PLAF consists of both 1-µm diameter fibers and 100-µm diameter beaded fibers. Four rats were used, and 2 trough-shaped resections of the liver parenchyma were performed (n = 8 lobes). Immediately after the resection, PLAF (PLAF group: n = 4 lobes) or rayon gauze (Rayon group: n = 4 lobes) were applied on the resected plane and compressed manually. We compared the mean time to hemostasis and blood loss per lobe, as well as histological findings between the groups.

RESULTS: The PLAF group had a significantly shorter bleeding time ( P = .006), and showed lower blood loss compared with the Rayon group ( P = .076). Histopathological evaluation showed a large amount of beads on the liver surface in the PLAF group. Aggregated red blood cells evident by electron microscopy and von Willebrand factor immunofluorescence were seen surrounding the beads. The PLAF group showed significantly greater von Willebrand factor expression than the Rayon group ( P = .004).

DISCUSSION: This new PLAF showed superior outcomes thanks to its unique characteristic of forming beaded nanofibers, and it has the potential to be an efficient hemostat in minimally invasive surgery in the human body.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app