MENU ▼
Read by QxMD icon Read
search
OPEN IN READ APP
JOURNAL ARTICLE

Incorporating single-arm evidence into a network meta-analysis using aggregate level matching: Assessing the impact

Joy Leahy, Howard Thom, Jeroen P Jansen, Emma Gray, Aisling O'Leary, Arthur White, Cathal Walsh
Statistics in Medicine 2019 March 20
30895655
Increasingly, single-armed evidence is included in health technology assessment submissions when companies are seeking reimbursement for new drugs. While it is recognized that randomized controlled trials provide a higher standard of evidence, these are not available for many new agents that have been granted licenses in recent years. Therefore, it is important to examine whether alternative strategies for assessing this evidence may be used. In this work, we examine approaches to incorporating single-armed evidence formally in the evaluation process. We consider matching aggregate level covariates to comparator arms or trials and including this evidence in a network meta-analysis. We consider two methods of matching: (i) we include the chosen matched arm in the data set itself as a comparator for the single-arm trial; (ii) we use the baseline odds of an event in a chosen matched trial to use as a plug-in estimator for the single-arm trial. We illustrate that the synthesis of evidence resulting from such a setup is sensitive to the between-study variability, formulation of the prior for the between-design effect, weight given to the single-arm evidence, and extent of the bias in single-armed evidence. We provide a flowchart for the process involved in such a synthesis and highlight additional sensitivity analyses that should be carried out. This work was motivated by a hepatitis C data set, where many agents have only been examined in single-arm studies. We present the results of our methods applied to this data set.

Comments

You need to log in or sign up for an account to be able to comment.

No comments yet, be the first to post one!

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
30895655
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"