Add like
Add dislike
Add to saved papers

Monitoring cellular C:N ratio in phytoplankton by means of FTIR-spectroscopy.

Journal of Phycology 2019 March 21
Statistical growth rate modelling can be applied in a variety of ecological and biotechnological applications. Such models are frequently based on Monod or Droop equations and, especially for the latter, require reliable determination of model input parameters such as C:N quotas. Besides growth rate modelling, a C:N quota quantification can be useful for monitoring and interpretation of physiological acclimation to abiotic and biotic disturbances (e.g., nutrient limitations). However, as high throughput C:N quota determination is difficult to perform, alternatives need to be established. Fourier-transformed infrared (FTIR) spectroscopy is used to analyze a variety of biochemical, chemical and physiological parameters in phytoplankton. Hence, a quantification of the C:N quota should also be feasible. Therefore, using FTIR spectroscopy, six phytoplankton species from among different phylogenetic groups have been analyzed to determine the effect of nutrient limitation on C:N quota patterns. The typical species-specific response to increasing nitrogen limitation was an increase in the C:N quota. Irrespective of this species specificity, we were able to develop a reliable multi-species C:N quota prediction model based on FTIR spectroscopy using the partial least square regression (PLSR) algorithm. Our data demonstrate that the PLSR approach is more robust in C:N quota quantification (R² = 0.93) than linear correlation of C:N quota versus growth rate (R² ranges from 0.74 to 0.86) or biochemical information based on FTIR spectra (R² ranges from 0.82 to 0.89). This accurate prediction of C:N values may support high throughput measurements in a broad range of future approaches. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app