Add like
Add dislike
Add to saved papers

A New Method for Workplace Monitoring of Airborne Diacetyl and 2,3-Pentanedione Using Thermal Desorption Tubes and Gas Chromatography-Mass Spectrometry.

Diacetyl is a potentially harmful chemical that is used as an artificial flavouring in the food industry and may also be generated during processing of some natural products including coffee. In Europe, an 8-h time weighted average occupational exposure limit (TWA-OEL) of 20 ppb has been adopted for diacetyl, together with a short-term exposure limit (STEL) of 100 ppb. A sensitive new measurement method for diacetyl, and the related compound 2,3-pentanedione has been developed and evaluated. The new method uses Tenax TA sorbent tubes as the sampling media with analysis by thermal desorption (TD) and gas chromatography-mass spectrometry (GC-MS). The sample tubes are suitable for both active (pumped) and passive (diffusive) sampling. Diacetyl is stable on the sample tubes for at least 3 months but 2,3-pentanedione requires analysis within a month. Sample recovery is unaffected by changes in relative humidity and the presence of acetic acid. For short-term sampling, active sampling is recommended. The safe sampling volume for diacetyl is 3 litres which, at a flow rate of 100 ml min-1, equates to a maximum recommended sampling time of 30 min. For long-term samples, in particular collection of personal samples, passive sampling is recommended. Diffusive uptake rates have been determined for both diacetyl and 2,3-pentanedione on Tenax TA tubes fitted with standard diffusion heads over sampling periods of 1 to 8 h. Analytical limits of detection are approximately 0.2 ng for diacetyl and 0.1 ng for 2,3-pentanedione. These values equate to airborne concentrations of around 0.04 ppb of diacetyl and 0.02 ppb of 2,3-pentanedione for a 1.5-litre active sample and 0.3 ppb of diacetyl and 0.1 ppb of 2,3-pentanedione for an 8-h passive sample. In the case of passive sampling, this limit of detection is less than 1/50th of the new European TWA-OEL for diacetyl of 20 ppb. The method can also be used to identify the presence of other volatile organic compounds at sub-ppm concentrations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app