Add like
Add dislike
Add to saved papers

Symmetry Breaking at MAPbI 3 Perovskite Grain Boundaries Suppresses Charge Recombination: Time-Domain Ab Initio Analysis.

The influence of grain boundaries (GBs) on charge carrier lifetimes in methylammonium lead triiodide perovskite (MAPbI3) remains unclear. Some experiments suggest that GBs promote rapid nonradiative decay and deteriorate device performance, while other measurements indicate that charge recombination happens primarily in non-GB regions, and that GBs facilitate charge separation and collection. By combining time-domain density functional theory and nonadiabatic (NA) molecular dynamics, we demonstrate that charge separation and localization happening at MAPbI3 GBs due to symmetry breaking suppresses charge recombination. Even though GBs lower the MAPbI3 bandgap and charge localization enhances interactions with phonons, electron-hole separation decreases the NA coupling, and the excited state lifetime remains virtually unchanged compared to the pristine perovskite. Our study rationalizes how GBs can have a positive influence on perovskite optoelectronic properties, and advances fundamental understanding of charge carrier dynamics in these fascinating materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app