Add like
Add dislike
Add to saved papers

Deletion of Galectin-3 attenuates acute pancreatitis in mice by affecting activation of innate inflammatory cells.

Acute pancreatitis is characterized by autodigestion of pancreatic cells followed by acute inflammation leading to pathology and death. In experimental acute pancreatitis, pancreatic acinar cells and infiltrating macrophages express Galectin-3 but its role in pathology of this disease is unknown. Therefore, we studied its role using Galectin-3 deficient mice. Deletion of Galectin-3 prolonged the survival of mice, led to attenuation of histopathology, decreased infiltration of mononuclear cells and neutrophils that express TLR-4, in particular, pro-inflammatory N1 neutrophils. Galectin-3 and TLR-4 are also colocalized on infiltrating cells. Lack of Galectin-3 reduced expression of pro-inflammatory TNF-α and IL-1β in F4/80+ CD11c- and CD11c+ F4/80- cells. Thus, deletion of Galectin-3 ameliorates acute pancreatitis by attenuating early influx of neutrophils and inflammatory mononuclear cells of innate immunity. These findings provide the basis to consider Galectin-3 as a therapeutic target in acute pancreatitis. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app