Add like
Add dislike
Add to saved papers

The DNA methylation profile of human spermatogonia at single-cell- and single-allele-resolution refutes its role in spermatogonial stem cell function and germ cell differentiation.

Human spermatogonial stem cells (hSSCs) have potential in fertility preservation of pre-pubertal boys or in treatment of male adults suffering from meiotic arrest. Prior to therapeutic application, in-vitro propagation of rare hSSCs is mandatory. As the published data points to epigenetic alterations in long-term cell culture of spermatogonia (SPG), an initial characterisation of their DNA methylation state is important. Testicular biopsies from five adult normogonadotropic patients were converted into aggregate-free cell suspensions. FGFR3-positive (FGFR3+) SPG, resembling a very early stem cell state, were labeled with magnetic beads and isolated in addition to unlabeled SPG (FGFR3-). DNA methylation was assessed by limiting dilution bisulfite pyrosequencing for paternally imprinted (H19, MEG3), maternally imprinted (KCNQ1OT1, PEG3, SNRPN), pluripotency (POU5F1/OCT4, NANOG) and spermatogonial/hSSC marker (FGFR3, GFRA1, PLZF, L1TD1) genes on either single cells or pools of ten cells. Both spermatogonial subpopulations exhibited a methylation pattern largely equivalent to sperm, with hypomethylation of hSSC marker and maternally imprinted genes and hypermethylation of pluripotency and paternally imprinted genes. Interestingly, we detected fine differences between the two spermatogonial subpopulations, which were reflected by an inverse methylation pattern of imprinted genes, i.e. decreasing methylation in hypomethylated genes and increasing methylation in hypermethylated genes, respectively, from FGFR3+ through FGFR3- SPG to sperm. Limitations of this study are due to it not being performed on a genome-wide level and being based on previously published regulatory gene regions. However the concordance of DNA methylation between spermatogonia and sperm implies that hSSC regulation and germ cell differentiation does not occur at the DNA methylation level.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app