Add like
Add dislike
Add to saved papers

GeCo: Classification Restricted Boltzmann Machine Hardware for On-Chip Semisupervised Learning and Bayesian Inference.

The probabilistic Bayesian inference of real-time input data is becoming more popular, and the importance of semisupervised learning is growing. We present a classification restricted Boltzmann machine (ClassRBM)-based hardware accelerator with on-chip semisupervised learning and Bayesian inference capability. ClassRBM is a specific type of Markov network that can perform classification tasks and reconstruct its input data. ClassRBM has several advantages in terms of hardware implementation compared to other backpropagation-based neural networks. However, its accuracy is relatively low compared to backpropagation-based learning. To improve the accuracy of ClassRBM, we propose the multi-neuron-per-class (multi-NPC) voting scheme. We also reveal that the contrastive divergence (CD) algorithm, which is commonly used to train RBM, shows poor performance in this multi-NPC ClassRBM. As an alternative, we propose an asymmetric contrastive divergence (ACD) training algorithm that improves the accuracy of multi-NPC ClassRBM. With the ACD learning algorithm, ClassRBM operates in the form of a combination of Markov Chain training and Bayesian inference. The experimental results on a field-programmable gate array (FPGA) board for a Modified National Institute of Standards and Technology data set confirm that the inference accuracy of the proposed ACD algorithm is 5.82% higher for a supervised learning case and 12.78% higher for a 1% labeled semisupervised learning case than the conventional CD algorithm. Also, the GeCo ver.2 hardware implemented on a Xilinx ZCU102 FPGA board was 349.04 times faster than the C simulation on CPU.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app