Add like
Add dislike
Add to saved papers

Composite interaction tree for simultaneous learning of optimal individualized treatment rules and subgroups.

Treatment response heterogeneity has long been observed in patients affected by chronic diseases. Administering an individualized treatment rule (ITR) offers an opportunity to tailor treatment strategies according to patient-specific characteristics. Overly complex machine learning methods for estimating ITRs may produce treatment rules that have higher benefit but lack transparency and interpretability. In clinical practices, it is desirable to derive a simple and interpretable ITR while maintaining certain optimality that leads to improved benefit in subgroups of patients, if not on the overall sample. In this work, we propose a tree-based robust learning method to estimate optimal piecewise linear ITRs and identify subgroups of patients with a large benefit. We achieve these goals by simultaneously identifying qualitative and quantitative interactions through a tree model, referred to as the composite interaction tree (CITree). We show that it has improved performance compared to existing methods on both overall sample and subgroups via extensive simulation studies. Lastly, we fit CITree to Research Evaluating the Value of Augmenting Medication with Psychotherapy trial for treating patients with major depressive disorders, where we identified both qualitative and quantitative interactions and subgroups of patients with a large benefit.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app