Add like
Add dislike
Add to saved papers

First-principles DFT insights into the structural, elastic, and optoelectronic properties of α and β-ZnP 2 : implications for photovoltaic applications.

Binary II-V semiconductors are highly optically active materials, possess high intrinsic mechanical and chemical durability, and have electronic properties ideal for optoelectronic applications. Among them, zinc diphosphide (ZnP2 ) is a promising earth-abundant absorber material for solar energy conversion. We have investigated the structural, mechanical, and optoelectronic properties of both the tetragonal (α) and monoclinic (β) phases of ZnP2 using standard, Hubbard-corrected and screened hybrid density functional theory methods. Through the analysis of bond character, band gap nature, and absorption spectra, we show that there exist two polymorphs of the β phase (denoted as β 1 and β 2 ) with distinct differences in the photovoltaic potential. While β 1 exhibits the characteristics of metallic compounds, β 2 is a semiconductor with predicted thin-film photovoltaic absorbing efficiency of almost 10%. The α phase is anticipated to be an indirect gap material with a calculated efficiency limited to only 1%. We have also analysed and gained insights into the electron localization function, projected density of states and projected crystal orbital Hamilton populations for the analogue bonds between the α and β-ZnP2 . In light of these calculations, a number of previous discrepancies have been solved and a solid ground for future employment of zinc diphosphides in photovoltaics has been established.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app