Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Hydrangea-structured tumor microenvironment responsive degradable nanoplatform for hypoxic tumor multimodal imaging and therapy.

Biomaterials 2019 June
Developing new strategies to alleviate tumor hypoxia and enhance the therapeutic efficacy towards solid tumors is of great significance to tumor therapy. Herein, to overcome tumor hypoxia, specifically designed aza-BODIPY photosensitizer is co-loaded with anti-cancer drug (doxorubicin, DOX) onto the hydrangea-structured MnO2 nanoparticles, and a tumor microenvironment (TME) responsive degradable nanoplatform (MDSP NP) is established. MDSP NPs (∼54 nm), with near infrared absorption (∼853 nm), can be rapidly dissociated to generate oxygen in response to TME, whereby improving tumor hypoxia, in favor of effective drugs release and enhanced chemo/photodynamic therapy. Revealed by in vivo fluorescence and photoaccoustic imaging, MDSP NPs are preferential accumulated at tumor site. Confirmed by photothermal imaging, MDSP NPs can induce hyperthermia to relieve hypoxia, promote the uptake of therapeutic nanoparticles, and further reduce the resistance and improve the therapeutic efficiency. As a result, a remarkable synergistic tumor chemo/photodynamic/photothermal therapy with hydrangea-structured TME responsive oxygen-self-generation nanoplatform is confirmed by both in vitro and in vivo studies, testifying its great potential for hypoxic tumor treatment in clinical application.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app