Add like
Add dislike
Add to saved papers

Histological Assessment of Cre-loxP Genetic Recombination in the Aging Subventricular Zone of Nestin-CreER T2 /Rosa26YFP Mice.

The use of inducible transgenic Nestin-CreERT2 mice has proved to be an essential research tool for gene targeting and studying the molecular pathways implicated in adult neurogenesis, namely, inside the adult subgranular zone (SGZ) of the dentate gyrus and the adult subventricular zone (SVZ) lining the lateral ventricles. Several lines of Nestin-CreER-expressing mice were generated and used in adult neurogenesis research in the past two decades; however, their suitability for studying neurogenesis in aged mice remains elusive. Here, we assessed the efficiency of Cre-loxP genetic recombination in the aging SVZ using the Nestin-CreERT2 /Rosa26YFP line designed by Lagace et al. (J Neurosci 27(46):12623-12629, 2007). This analysis was performed in 12-month-old (middle-aged) mice and 20-month-old (old) mice compared to 2-month-old (young adult) mice. To evaluate successful recombination, our approach relies on the histological assessment of Cre mRNA level of expression and the YFP reporter gene's expression inside the aging SVZ by combining in situ hybridization and immunohistochemistry. Using co-immunolabeling, this approach also provides the advantage of estimating the percentage of recombined progeny [(GFP+Nestin+)/Nestin+] and the rate of cell proliferation [(GFP+Ki67+)/GFP+] inside the aging SVZ niche.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app