Add like
Add dislike
Add to saved papers

Collapse of LiNi 1- x- y Co x Mn y O 2 Lattice at Deep Charge Irrespective of Nickel Content in Lithium-Ion Batteries.

Volume variation and the associated mechanical fracture of electrode materials upon Li extraction/insertion are a main cause limiting lifetime performance of lithium-ion batteries. For LiNi1- x- y Co x Mn y O2 (NCM) cathodes, abrupt anisotropic collapse of the layered lattice structure at deep charge is generally considered characteristic to high Ni content and can be effectively suppressed by elemental substitution. Herein, we demonstrate the lattice collapse is a universal phenomenon almost entirely dependent on Li utilization, and not Ni content, of NCM cathodes upon delithiation. With Li removal nearing 80 mol %, very similar c-axis lattice shrinkage of around 5% occurs concurrently for NCMs synthesized in-house regardless of nickel content (90, 70, 50, or 33 mol %); meanwhile, the a-axis lattice contracts for high-Ni NCM, but it expands for low-Ni NCM. We further reveal Co-Mn cosubstitution in NCM barely, if at all, affects several key structural aspects governing the lattice distortion upon delithiation. Our results highlight the importance of evaluating true implications of compositional tuning on high-Ni layered oxide cathode materials to maximize their charge-storage capacities for next-generation high-energy Li-ion batteries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app