Add like
Add dislike
Add to saved papers

Microsatellite Markers Reveal Genetic Diversity and Relationships within a Melon Collection Mainly Comprising Asian Cultivated and Wild Germplasms.

Melon, Cucumis melo L., is an important horticultural crop with abundant morphological variability, but the genetic diversity and relationships within wild and cultivated melons remain unclear to date. In this study, thick-skinned (TC) (cultivated subspecies melo ), thin-skinned (TN) (cultivated subspecies agrestis ), and wild accessions were analyzed for genetic diversity and relationships using 36 microsatellite markers. A total of 314 alleles were detected with a mean allelic number of 8.72 and polymorphism information content of 0.67. Cluster analysis of the accessions resulted in four distinct clusters (I, II, III, and IV) broadly matching with the TC, TN, and wild groups. Cluster I contained only two Indian wild accessions. Cluster II was consisted of 49 South Asian accessions, 34 wild accessions, and 15 TN accessions. Cluster III was a typical TC group including 51 multiorigin TC accessions and one wild accession. The remaining 88 accessions, including 75 TN accessions, 6 wild accessions, and 7 TC accessions, formed the cluster IV, and all the TN and wild accessions in this cluster were from China. These findings were also confirmed by Principal component analysis and STRUCTURE analysis. The South Asian subspecies agrestis accessions, wild and cultivated, had close genetic relationships with a distinctive genetic background. Chinese wild melons showed closeness to cultivated subspecies agrestis landraces and could be a return from the indigenous cultivated melons. The AMOVA and pairwise F statistics ( F ST ) presented genetic differentiation among the three groups, with the strongest differentiation ( F ST = 0.380) between TC and TN melons. These results offer overall information on genetic diversity and affiliations within a variety of melon germplasms and favor efficient organization and utilization of these resources for the current breeding purpose.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app