Add like
Add dislike
Add to saved papers

Mechanisms Contributing to Increment Threshold and Decrement Threshold Spectral Sensitivities.

Vision Research 2019 March 16
The shape of the human spectral sensitivity function depends on how it is measured. In the increment threshold (IT) technique, sensitivity is typically measured as the inverse of threshold for detection of increments of monochromatic light presented for relatively long durations on achromatic pedestals. Spectral sensitivity functions derived from IT techniques have long been used to reveal contribution from opponent color channels. Although IT functions have been studied extensively, little attention has been given to functions derived from decrement thresholds (DT), partly due to technical challenges of producing appropriate stimuli. Comparison of IT and DT spectral sensitivities may be of interest because there are known asymmetries in the visual system between on- and off-pathways and between increment and decrement responses within these pathways. Consequently, spectral sensitivity functions obtained using DT measures may reveal a different complement of contributing mechanisms than those that produce IT functions. We report here that IT and DT derived spectral sensitivities were essentially identical over much of the visible spectrum. However, decrement sensitivity was slightly greater than increment sensitivity in the shorter wavelengths at modest light levels. This difference was not present at higher light levels, implicating rod pathways as a possible source of the difference. In sum, it appears that under conditions shown to reveal strong contribution from opponent mechanisms, decrement functions are either 1) determined by a similar complement of spectrally opponent mechanisms as those that define increment spectral sensitivities or 2) that the present conditions are insensitive to underlying asymmetries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app