Add like
Add dislike
Add to saved papers

High throughput process development workflow with advanced decision-support for antibody purification.

Chromatography remains the workhorse in antibody purification; however process development and characterisation still require significant resources. The high number of operating parameters involved requires extensive experimentation, traditionally performed at small- and pilot-scale, leading to demands in terms of materials and time that can be a challenge. The main objective of this research was the establishment of a novel High Throughput Process Development (HTPD) workflow combining scale-down chromatography experimentation with advanced decision-support techniques in order to minimise the consumption of resources and accelerate the development timeframe. Additionally, the HTPD workflow provides a framework to rapidly manipulate large datasets in an automated fashion. The central component of the HTPD workflow is the systematic integration of a microscale chromatography experimentation strategy with an advanced chromatogram evaluation method, design of experiments (DoE) and multivariate data analysis. The outputs of this are leveraged into the screening and optimisation components of the workflow. For the screening component, a decision-support tool was developed combining different multi-criteria decision-making techniques to enable a fair comparison of a number of CEX resin candidates and determine those that demonstrate superior purification performance. This provided a rational methodology for screening chromatography resins and process parameters. For the optimisation component, the workflow leverages insights provided through screening experimentation to guide subsequent DoE experiments so as to tune significant process parameters for the selected resin. The resulting empirical correlations are linked to a stochastic modelling technique so as to predict the optimal and most robust chromatographic process parameters to achieve the desired performance criteria.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app