A Bayesian nonparametric causal inference model for synthesizing randomized clinical trial and real-world evidence

Chenguang Wang, Gary L Rosner
Statistics in Medicine 2019 March 18
With the wide availability of various real-world data (RWD), there is an increasing interest in synthesizing information from both randomized clinical trials and RWD for health-care decision makings. The task of addressing study-specific heterogeneities is one of the most difficult challenges in synthesizing data from disparate sources. Bayesian hierarchical models with nonparametric extension provide a powerful and convenient platform that formalizes the information borrowing strength across the sources. In this paper, we propose a propensity score-based Bayesian nonparametric Dirichlet process mixture model that summarizes subject-level information from randomized and registry studies to draw inference on the causal treatment effect. Simulation studies are conducted to evaluate the model performance under different scenarios. In addition, we demonstrate the proposed method using data from a clinical study on angiotensin converting enzyme inhibitor for treating congestive heart failure.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"