Add like
Add dislike
Add to saved papers

Non-enzymatic fluorescent glucose sensor using vertically aligned ZnO nanotubes grown by a one-step, seedless hydrothermal method.

Mikrochimica Acta 2019 March 17
A sensitive non-enzymatic fluorescent glucose sensor, consisting of vertically aligned ZnO nanotubes (NTs) grown on low-cost printed circuit board substrates, is described. The ZnO NTs were synthesized by a one-step hydrothermal method without using a seed layer. The sensor function is based on the photoluminescence (PL) quenching of ZnO NTs treated with different concentrations of glucose. The UV emission (emission maximum at 384 nm under 325 nm excitation) decreases linearly with increasing glucose concentration. The sensor exhibits a sensitivity of 3.5%·mM-1 (defined as percentage change of the PL peak intensity per mM) and a lower limit of detection (LOD) of 70 μM. This is better than previously reported work based on the use of ZnO nanostructures. The detection range is 0.1-15 mM which makes the sensor suitable for practical uses in glucose sensing. The sensor was successfully applied to the analysis of human blood serum samples. It is not interfered by common concentrations of ascorbic acid, uric acid, bovine serum albumin, maltose, fructose, and sucrose. Graphical abstract Schematic of the one-step, seedless hydrothermal method utilized for synthesizing vertically aligned ZnO nanotubes on printed circuit board substrates (PCBs). The ZnO nanotubes were used to monitor glucose concentrations in a non-enzymatic fluorescent sensor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app