Add like
Add dislike
Add to saved papers

Spatio-temporal IAA gradient is determined by interactions with ET and governs flower abscission.

The abscission zone (AZ) is a specialized tissue that usually develops at the base of an organ and is highly sensitive to phytohormones, e.g., abscisic acid (ABA), ethylene (ET), and gibberellins (GAs). A current model of organ abscission assumes that the formation of an auxin gradient around the AZ area determines the time of shedding; however, that thesis is supported by studies that are primarily concerned with auxin transporters. To better understand the events underlying the progression of abscission, we focused for the first time on indole-3-acetic acid (IAA) distribution following AZ activation. We performed a series of immunolocalization studies in proximal and distal regions of floral AZ cells in yellow lupine, which is an agriculturally important legume. The examined phytohormone was abundant in natural active AZ cells, as well as above and below parts of this structure. A similar gradient of IAA was observed during the early steps of abscission, which was induced artificially by flower removal. Surprisingly, IAA was not detected in inactive AZ cells. This paper is also a consequence of our comprehensive studies concerning the phytohormonal regulation of flower abscission in yellow lupine. We present new data on interactions between IAA and ET, previously pointed out as a strong modulator of flower separation. The detailed analysis shows that disruption of the natural auxin gradient around the AZ area through the application of synthetic IAA had a positive effect on ET biosynthesis genes. We proved that these changes are accompanied by an accumulation of the ET precursor. On the other hand, exposure to ET significantly affected IAA localization in the whole AZ area in a time-dependent manner. Our results provide insight into the existence of a spatio-temporal sequential pattern of the IAA gradient related to the abscission process; this pattern is maintained by interactions with ET. We present new valuable evidence for the existence of conservative mechanisms that regulate generative organ separation and can help to improve the yield of agronomically significant species in the future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app