Add like
Add dislike
Add to saved papers

Combined Partial Denitrification (PD)-Anammox: A method for high nitrate wastewater treatment.

Elimination of nitrogen pollution from wastewater containing high-strength nitrate (NO3 - -N) is a significant issue to prevent deterioration of water quality and eutrophication of receiving water body. Traditional denitrification process faces several challenges including the huge organic carbon demand, intermediate products accumulation, and long acclimatization period. In this study, an efficient solution was given by a novel two-stage Partial Denitrification (PD)-Anammox process. High NO3 - -N (1000 mg N/L) wastewater and municipal sewage (COD: 182.5 mg/L, ammonia (NH4 + -N): 58.3 mg/L) were simultaneously introduced to the PD reactor for NO3 - -N converting to NO2 - -N. The NH4 + -N and NO2 - -N in effluent of PD were removed in subsequent anammox reactor. Results showed that a satisfactory nitrogen removal was achieved by optimizing the volume ratios of influent NO3 - -N and municipal sewage, as well as the external organic matter dosage. The NO3 - -N removal efficiency reached up to 95.8% without accommodation period, along with the NH4 + -N removal achieving 92.8%. Anammox contributed to 78.9% of TN removal despite the high COD (76.5-98.6 mg/L) in PD effluent was introduced, indicating the significant stability of the integrated process. The microbial analysis suggested that the Candidatus Brocadia, identified as anammox bacteria, cooperated stable with denitrifying bacteria in 215-day operation. The PD-Anammox process offers an economically and technically attractive approach in the high NO3 - -N wastewater treatment since it has great advantages of much low carbon demand, minimal sludge production, enabling simultaneous treatment of municipal sewage, and avoiding the common issues in traditional denitrification process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app